skip to main content


Search for: All records

Creators/Authors contains: "Ma, Keping"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2024
  2. Abstract

    Plant microbiomes are known to influence host fitness and ecosystem functioning, but mechanisms regulating their structure are poorly understood.

    Here, we explored the assembly mechanisms of leaf epiphytic and endophytic bacterial communities using a subtropical forest biodiversity experiment.

    Both epiphytic and endophytic bacterial diversity increased as host tree diversity increased. However, the increased epiphytic diversity in more diverse forests was driven by greater epiphytic diversity (i.e. greaterα‐diversity) on individual trees, whereas the increased endophytic diversity in more diverse forests was driven by greater dissimilarity in endophytic composition (i.e. greaterβ‐diversity) among trees. Mechanistically, responses of epiphytes to changes in host diversity were consistent with mass effects, whereas responses of endophytes were consistent with species sorting.

    Synthesis. These results provided novel experimental evidence that biodiversity declines of plant species will lead to biodiversity declines of plant‐associated microbiomes, but the underlying mechanism may differ between habitats on the plant host.

     
    more » « less
  3. Abstract Aim

    While the floras of eastern Asia (EA) and eastern North America (ENA) share numerous genera, they have drastically different species richness. Despite an overall similarity in the quality of their temperate climates, the climate of EA is more spatially heterogeneous than that of ENA. Spatial environmental heterogeneity has been found to play a key role in influencing species richness in some regions. Here, we tested the following hypotheses: (a) EA species will occupy larger climatic niches than their ENA congeners, (b) congeners of EA‐ENA disjunct genera will occupy statistically equivalent climatic niches, and (c) congeners of EA‐ENA disjunct genera will occupy more similar climatic niches than expected by their respective physiographic context.

    Location

    North America and Asia.

    Time period

    Present.

    Major taxa studied

    Seed plants.

    Methods

    Predictions generated by ecological niche models (ENMs) were compared for 88 species across 31 EA‐ENA disjunct genera. ENM predictions were assessed for geographic and ecological breadth. Tests for niche equivalency and similarity were performed for congeneric species pairs to determine if species of disjunct genera have experienced niche conservatism or divergence.

    Results

    EA species tend to occupy greater amounts of climatic niche space than their close relatives in ENA. Over two‐thirds of the conducted niche comparisons show that EA‐ENA congeners either occupy equivalent climatic niche space within these broader climatic regimes or occupy non‐equivalent niches that are as similar as expected given their physiographic contexts.

    Main conclusions

    EA species tend to occupy larger climatic niches, and congeners of EA‐ENA disjunct genera tend to occupy equivalent/similar niche space within their respective distributions, with differences in occupied niches possibly due to their respective physiographic contexts, highlighting how niche‐neutral processes and niche conservatism may affect the distributions of disjunct species.

     
    more » « less
  4. Pascual, Mercedes (Ed.)
    When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands’ physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees’ distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions. 
    more » « less
  5. null (Ed.)
    Abstract Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity. 
    more » « less
  6. null (Ed.)
  7. Abstract

    Among the local processes that determine species diversity in ecological communities, fluctuation‐dependent mechanisms that are mediated by temporal variability in the abundances of species populations have received significant attention. Higher temporal variability in the abundances of species populations can increase the strength of temporal niche partitioning but can also increase the risk of species extinctions, such that the net effect on species coexistence is not clear. We quantified this temporal population variability for tree species in 21 large forest plots and found much greater variability for higher latitude plots with fewer tree species. A fitted mechanistic model showed that among the forest plots, the net effect of temporal population variability on tree species coexistence was usually negative, but sometimes positive or negligible. Therefore, our results suggest that temporal variability in the abundances of species populations has no clear negative or positive contribution to the latitudinal gradient in tree species richness.

     
    more » « less